IEEE Smart Grid Research: Control Systems PDF
The Smart Grid is a system of distributed systems whose domains span the more traditional domains of bulk generation, transmission, distribution, consumers, markets, and power electronics, with the growing penetration of relatively newer domains such as renewables, electric vehicles, and demand-response-compatible loads. Smart Grid control enables prescriptions for interconnections and interactions among these traditional and emerging domains at the right instants, at the right locations, and in the right manner (Figure 1). The combined expertise of control engineers and scientists will ensure that appropriate loops are closed, optimal set points and supervisory commands are generated, and desired goals of resiliency, renewables integration, reliability, security, and empowerment of consumers are met [i.e., to realize a Smart Grid vision (Figure 2)]. Starting with the planning stages of markets, and following the path of the electron all the way from generation to the end user¿¿¿and increasingly in reverse as well¿¿¿several problems with achieving the desired set criteria and objectives have to be solved in an automated and optimized manner. The Smart Grid will be a holistically and pervasively closed-loop system; control will be central in the grid landscape (Figure 3). The underlying physics, the interconnection topologies, and the dynamic interactions among various domains will inform control algorithms and architectures (Figure 4). The challenge is to identify the most dominant features of these physics, interconnections, and interactions (e.g., control-oriented models), as well as to determine the most efficient, effective, and resilient control solutions.
– Active. The Smart Grid is a system of distributed systems whose domains span the more traditional domains of bulk generation, transmission, distribution, consumers, markets, and power electronics, with the growing penetration of relatively newer domains such as renewables, electric vehicles, and demand-response-compatible loads. Smart Grid control enables prescriptions for interconnections and interactions among these traditional and emerging domains at the right instants, at the right locations, and in the right manner (Figure 1). The combined expertise of control engineers and scientists will ensure that appropriate loops are closed, optimal set points and supervisory commands are generated, and desired goals of resiliency, renewables integration, reliability, security, and empowerment of consumers are met [i.e., to realize a Smart Grid vision (Figure 2)]. Starting with the planning stages of markets, and following the path of the electron all the way from generation to the end user¿¿¿and increasingly in reverse as well¿¿¿several problems with achieving the desired set criteria and objectives have to be solved in an automated and optimized manner. The Smart Grid will be a holistically and pervasively closed-loop system; control will be central in the grid landscape (Figure 3). The underlying physics, the interconnection topologies, and the dynamic interactions among various domains will inform control algorithms and architectures (Figure 4). The challenge is to identify the most dominant features of these physics, interconnections, and interactions (e.g., control-oriented models), as well as to determine the most efficient, effective, and resilient control solutions. For Corporate or Institutional Access, request a custom quote for your organization at www.ieee.org/smartgridresearch